Recombinant interleukin-2 pre-treatment increases anti-tumor response to paclitaxel by affecting lung P-glycoprotein expression on the Lewis lung carcinoma

Benoît Hosten^a, Désiré Challuau^b, Sophie Gil^a, Céline Bouquet^c, Sylvie Marion^e, Michel Perricaudet^c, Mario Di Palma^d, Robert Farinotti^a and Laurence Bonhomme-Faivre^{a,e}

The aim of the present study was to examine modifications of anti-tumor activity and toxicity of paclitaxel (PLX) when given p.o. after recombinant interleukin-2 (rIL-2) to Lewis lung carcinoma-bearing mice. PLX was given orally to mice at the dose of 15 mg/kg on day 8 and 30 mg/kg on day 15, either alone or after 16.5 µg of rIL-2 given i.p. twice a day either 1 or 3 days before. The anti-tumor activity was higher and PLX hematological toxicity not increased if orally administered PLX was given after a 3-day rIL-2 pre-treatment rather than if given alone. Lung metastasis was significantly lower and s.c. tumors were smaller in the PLX+rIL-2 group than in the PLX or rIL-2 or non-treated groups. In addition, a decrease in lung P-glycoprotein expression (investigated by Western blot analysis) was observed 1 h after the last administration of rIL-2 on

day 7. Anti-Cancer Drugs 17:195-199 © 2006 Lippincott Williams & Wilkins.

Anti-Cancer Drugs 2006, 17:195-199

Keywords: Lewis lung carcinoma, lung metastasis, P-glycoprotein, paclitaxel, recombinant interleukin-2

^aUPRES EA 2706, University of Pharmaceutical Sciences, Paris, France, ^bAnimals Department, ^cUMR 8121 CNRS Gene Transfer and Vectorology, ^dDepartment of Medical Oncology, Institut Gustave Roussy, Villejuif, France and Laboratories of and ^ePharmacology and Haematology, Paul Brousse Hospital,

Correspondence to L. Bonhomme-Faivre, Laboratoire de Pharmacologie, Service Pharmacie, Hôpital Paul Brousse, 14 avenue Paul Vaillant-Couturier, 94800 Villejuif, France.

Tel: +33 145593838; fax: +33 145593728; e-mail: Laurence.bonhomme-faivre@pbr.ap-hop-paris.fr

Received 13 September 2005 Accepted 22 October 2005

Introduction

Paclitaxel (PLX), a drug from the tubulin-inhibiting taxane family, is used for the treatment of breast, ovarian and non-small cell lung carcinoma [1,2]. Following its administration, PLX undergoes extensive metabolism and biliary excretion. Three main metabolites are formed via cytochrome CYP2C8- and CYP3A4-mediated pathways. Its main side-effect is a reversible hematotoxicity [3,4]. PLX is a known substrate of P-glycoprotein (P-gp) and basal expression of P-gp plays a role in the resistance of cancer cells to PLX by its action as an efflux pump [5,6].

Physiologically, P-gp protects the body from toxicity caused by xenobiotics or endogenous substances by preventing their absorption from the intestinal tract and their distribution into specific organs, and by promoting their clearance by its action in the bile canaliculi and the kidneys. These different roles may explain the results obtained from clinical trials investigating the enhanced bioavailability of orally administered PLX combined with a P-gp inhibitor such as cyclosporine, MS-209 (a quinoline type reversal agent) or zosuquidar trihydrochloride [7,8].

The multidrug resistance (MDR1) gene encoding human multidrug resistance-related P-gp may play an important

role in the resistance of lung cancer [9]. Recombinant interleukin-2 (rIL-2) has been shown to decrease MDR1 mRNA as well as P-gp expression in cultured cells from human colon carcinoma [10], and in vivo both in the intestine and the brain of Swiss mice [11]. This cytokine has many effects on the body, particularly by activating the immune cells [12] and by inducing cancer cell destruction [13,14]. We have also reported that a 3-day pre-treatment by rIL-2 increases PLX oral bioavailability in mice [15].

Here, we studied the anti-tumor activity and toxicity of PLX given orally after i.p. rIL-2 pre-treatment in Lewis lung carcinoma (LCC)-bearing mice. We evaluated the effects of PLX alone, rIL-2 alone and their association on the growth of s.c. transplanted LLC tumors and on the number of spontaneously arising LLC lung metastases. We also measured P-gp expression in the mouse lung after pre-treatment with rIL-2.

Materials and methods **Tumor cells**

Cell culture media and reagents were purchased from Invitrogen Life Technologies (Cergy Pontoise, France). LLC cells were kept frozen in 90% FBS/10% DMSO (the cells were supplied by UMR 8121, Gustave Roussy

0959-4973 © 2006 Lippincott Williams & Wilkins

Institute). They were cultured for 10 days in RPMI 1640 medium glutamate supplemented with 10% heat-inactivated FBS and a 1 × mixture of antibiotics (sodium penicillin G 10000 IU/ml and streptomycin sulfate $10\,000\,\mu g/ml$).

Drug preparation

PLX was prepared from a Taxol vial (Laboratory BMS, Puteaux, France) which contains 30 mg/5 ml with Cremophor-EL and ethanol. Either 10 or 2.5 ml sterile saline was added to obtain, respectively, a 2 or 4 mg/ml solution [3]. An aliquot of 150 µl of these solutions was administered by force-feeding to mice (average weight 20 g); respectively, 15 and 30 mg/kg/dose.

rIL-2 (Proleukin; Chiron, Suresnes, France) containing 18×10^6 IU was reconstituted with 1.2 ml of water. Then, 1 ml of the reconstituted preparation was diluted with 9 ml of 5% dextrose to obtain a final solution of $1.8 \times$ 10⁶ IU/ml. Aliquots of 150 μl were injected i.p. twice a day for 1 or 3 days (i.e. 16.5 µg of rIL-2 by injection) [3].

In-vivo protocol

Experiments were carried out on 6- to 8-week-old female C57Bl/6 mice (Charles River, L' Arbresle, France), which were given water and food ad libitum, in accordance with European Community guidelines.

LLC cells (10⁶) were injected on day 0 in a volume of 0.2 ml of sterile saline into the back of 50 mice. On day 5, when tumors reached a volume of 30–60 mm³, mice were randomized in five groups of 10 mice each: control (Group 1), rIL-2 alone (16.5 µg twice daily from day 5 to 7 and from day 12 to 14) (Group 2), PLX alone (15 mg/kg on day 8 and 30 mg/kg on day 15) (Group 3), rIL-2 twice daily on days 7 and 14, and then PLX 15 mg/kg on day 8 and 30 mg/kg on day 15 (Group 4), and rIL-2 twice daily from day 5 to 7 and from day 12 to 14, and then PLX 15 mg/kg on day 8 and 30 mg/kg on day 15 (Group 5).

Two perpendicular diameters (a and b) of the tumors were measured at regular intervals with a slide-square. Volume was calculated using the formula: $V = \pi ab^2/6$ [16].

Animals were sacrificed on day 23. Indian ink was injected through the trachea to stain the normal lung tissue, leaving the metastases as uncolored spots. Lungs were removed and immersed in glyofix fixative solution. The number of lung metastases was then counted under a binocular microscope [16].

Hematology

Blood counts were measured on the mouse on day 23 in a HMX Beckman coulter (Beckman Coulter, Fullerton, California, USA). Hematological parameters included neutrophils, blood platelets and lymphocytes. Blood formula percentages were evaluated on Giemsa-stained smears.

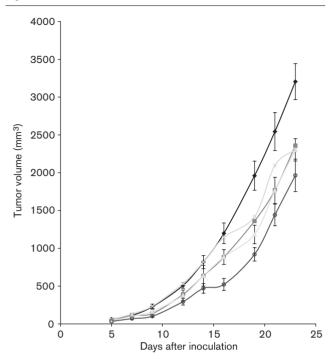
P-gp expression

P-gp expression was measured in the mouse lung by Western blot analysis. Lungs were removed 1 h after the last rIL-2 injection on day 7 (two mice from each group were sacrificed on day 7). Lung samples were homogenized using a glass Teflon potter in buffer (triethanolamine 10 mmol/l + 8.5% saccharose) containing protease inhibitors. The crude membranes obtained were solubilized with lysis buffer (Tris 1 mol/l, EDTA 0.5 mol/l, NaCl 3 mol/l, Triton 10%, SDS 20% and protease inhibitor). Protein concentration was determined using the colometric bicinchoninic assay kit (Sigma-Aldrich, St-Quentin Fallavier, France), with BSA as a standard. Samples of 15 µg of proteins were separated by SDS-PAGE on an 8% polyacrylamide gel and transferred onto a nitrocellulose membrane (Amersham, Orsay, France). The nitrocellulose membranes were then incubated with a primary antibody (C219, diluted to 1:100; Dako, Glostrup, Denmark) washed, and finally incubated with a peroxidase-conjugated anti-mouse IgG secondary antibody. The immunoreactive bands were visualized by the Enhanced Chemo-Luminescent system (Amersham, Little Chalfout, UK). The autoradiographs of P-gp protein were scanned and analyzed by densitometry using the Scion Image program to obtain a quantitative evaluation of the levels in the lung.

Statistical analysis

A Kruskal-Wallis ANOVA was carried out. If a significant difference was observed, a 2×2 statistical comparison test of the groups was performed (Bonferroni *t*-test).

Results


Influence of rIL-2 administration on paclitaxel efficacy on s.c. tumor growth

In mice who received rIL-2 twice daily from day 5 to 7 and from day 12 to 14, and then PLX 15 mg/kg on day 8 and 30 mg/kg on day 15 (Group 5), the average tumor volume was significantly lower than that of the control group (Group 1) on day 16 (P < 0.01) and on day 19 (P < 0.01, Bonferroni t-test) (Fig. 1). Other comparisons were not significantly different due to the very low bioavailability of PLX p.o.

In Group 3 (PLX alone) the tumor volume was significantly lower than that of the control group (P < 0.05) on day 19.

No significant difference was observed either between Group 3 (PLX alone) and Group 4 (rIL-2 i.p. twice a day on days 7 and 14, and then oral PLX on days 8 and 15) or between Groups 3 and 5 (rIL-2 i.p. twice a day from day

Fig. 1

Influence of rIL-2 administration on PLX efficacy on s.c. tumor growth. Group 1: control (diamonds). Group 2: rIL-2 from day 5 to 7 and from day 12 to 14 (squares). Group 3: PLX on days 8 and 15 (triangles). Group 4: rlL-2 on days 7 and 14, and then PLX on days 8 and 15 (crosses). Group 5: rlL-2 from day 5 to 7 and from day 12 to 14, and then PLX on days 8 and 15 (circles).

5 to 7 and from day 12 to 14, and then oral PLX on days 8 and 15) (P > 0.05).

RIL-2 i.p. twice daily from day 5 to 7 and from day 12 to 14, and then PLX 15 mg/kg on day 8 and 30 mg/kg on day 15 (Group 5) was the most efficient to control LLC s.c. growth, although it was not significantly better than PLX alone (Group 3).

Effects of the various treatments on the number of lung metastases

Treated mice were sacrificed on day 23, lungs were collected and stained with Indian ink, and metastases appearing as uncolored loci were counted under a binocular microscope. Data represent mean \pm SD for each group.

All the rIL-2-injected groups had significantly lower numbers of lung metastases than those of the control (Group 1) and PLX-alone groups (Group 3) (Table 1).

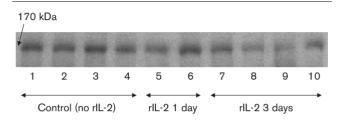

The smallest number of lung metastases was observed in Group 5, indicating that the combination rIL-2 for 3 days with PLX had the highest effect on metastases dissemination and development.

Table 1 Influence of rIL-2 administration on PLX efficacy on metastases development

Treatment	Lung metastases (mean ± SD)	
Control	21.9±3.6	
rlL-2	6.9 ± 2.8^{a}	
Paclitaxel	13.5 ± 1.9 ^a	
rlL-2 1 day/paclitaxel $5.3\pm1.5^{a,b}$		
rlL-2 3 days/paclitaxel	$1.9 \pm 0.7^{a,b}$	

^aP<0.01 versus controls (Bonferroni t-test).

Fig. 2

Immunodetection of P-gp from lungs of mice treated with rIL-2 for 1 or 3 days or no treatment. Lungs were collected 1 h after the last rIL-2 injection (on day 7) and lysed. Samples of 15 µg of protein were analyzed by Western blotting using the specific C219 anti-P-gp antibody. Control: from Group 1 (two mice) and Group 3 (two mice) (before PLX administration). rlL-2 1 day: from Group 4. rlL-2 3 days: from Group 2 (two mice) and Group 5 (two mice) (before PLX administration).

Table 2 Quantitative evaluation of lung P-gp expression

Treatment group	Quantitative evaluation of lung P-gp expression	
Controls (no rIL-2)	6770±309	
rIL-2 1 day	6411 ± 515	
rlL-2 3 days	4339 ± 480^{a}	

Autoradiographs of P-gp protein were scanned and analyzed by densitometry using the Scion Image program. Data represent means ±SD for each group. ^aP<0.05 versus controls.

Lung P-gp expression

The C219 anti-P-gp antibody we used recognized P-gp, the molecular mass of which is 170 kDa.

Western blot analysis of P-gp expression was performed in the lung of four control mice (two not treated from Group 1 and two from Group 3 before PLX administration) (Fig. 2, bands 1-4), two mice after 1 day of rIL-2 pre-treatment from Group 4 (Fig. 2, bands 5 and 6) and four mice after 3 days of rIL-2 (two from Group 2 and two from Group 5 before PLX administration) (Fig. 2, bands 7–10).

Immunoblots of P-gp protein were scanned to evaluate P-gp protein levels in the lung (Table 2). P-gp had decreased in lungs of mice which had received 3 days of the rIL-2 (Fig. 2, lanes 7-10). The immunoblot

 $^{^{}b}P < 0.01$ versus paclitaxel alone (Bonferroni t-test).

Table 3 Hematological parameters in mice on day 23

Groups	Polynuclear neutrophils (G/L)	Platelets (× 103 g/l)	Lymphocytes (G/L)
Control (Group 1)	4803±440	631 ± 34	9680±930
rIL-2 (Group 2)	5730 ± 1620	657 ± 63	8960±900
Paclitaxel (Group 3)	5449 ± 720	764 ± 87	8870 ± 820
Paclitaxel/rIL-2 1 day (Group 4)	9564 ± 2870	807 ± 75	10616±1370
Paclitaxel/rIL-2 3 days (Group 5)	4650 ± 610	657 ± 104	8480±615

Blood was collected on day 23 from each mouse and analyzed on a Beckman coulter counter. Data represent means ±SD for each group.

densitometry value of group treated with rIL-2 for 3 days was statistically lower than that of the control group (P < 0.05), but not significantly different from that of the group treated with rIL-2 for 1 day.

Hematological toxicity

No difference in hematological toxicity (polynuclear neutrophils, platelets and lymphocytes) was observed between the five groups on day 23 (Table 3). PLX treatment alone or in association with rIL-2 had no sideeffects on mouse blood formulation as there was no decline in blood cell counts under therapy.

Discussion

Preclinical studies with the murine Madison 109 lung carcinoma (M109) model indicate that optimum i.v doses of PLX per injection ranged from 24 to 36 mg/kg [17]. We gave a lower dose p.o. to allow a pre-treatment to increase PLX anti-tumor activity. The highest anti-tumor activity was observed after a pre-treatment with rIL-2 for 3 days followed by doses of PLX (15 and 30 mg/kg) administered p.o. without any increase of hematological toxicity.

Mice received rIL-2 for 3 days because preliminary experiments had shown that 1 day of pre-treatment was not enough to inhibit intestinal P-gp.

The group treated with PLX + rIL-2 for 3 days developed the lowest number of lung metastases and the least voluminous s.c. tumors. The group that received rIL-2 alone had a significantly smaller number of lung metastases than the control group, indicating that rIL-2 in itself has anti-cancer activity [13]. Consequently, it is reasonable to think that this increase in anti-cancer activity is due to the addition of the anti-cancer effect of PLX and rIL-2 iterative doses.

In mice treated for 3 days with rIL-2, lung P-gp expression measured 1 h after the last rIL-2 injection was significantly decreased, thus explaining the better anti-tumor activity of the association and in agreement with a recent study in 40 patients, indicating that the response to treatment by PLX of bronchial cancer patients is closely related to the level of expression of lung P-gp [9,18].

Other effects of rIL-2 could be discussed such as an increase of vascular permeability (capillary leaking syndrome) [19] allowing a better penetration of PLX in the tissues, particularly in tumors. This side-effect of rIL-2 was not investigated in this study. By facilitating absorption and distribution of PLX, rIL-2 could modify the effect of PLX in three ways; (i) by increasing the bioavailability of oral PLX by inhibiting intestinal P-gp as demonstrated previously [15], (ii) by reducing the efflux effect of P-gp in tumor cells and/or (iii) by increasing vascular permeability.

Cytokine-associated chemotherapy could have an interesting effect when compared to immunotherapy on resistant metastasis areas (liver, brain).

In addition, the association of the two treatments did not increase hematological toxicity, whereas other P-gp inhibitors do, such as cyclosporine, which increased the bioavailability of substrates of P-gp [7].

It would be interesting to determine the feasibility of associating rIL-2 and PLX in clinical studies.

Acknowledgements

We thank Patrice Ardouin and all the members of the Research Laboratory of the Animal Department of the Gustave Roussy Institute for their kind help with this project.

References

- Wiseman JR, Spencer CM. Paclitaxel: an update of its use in the treatment of metastatic breast cancer and ovarian and other gynecological cancers. Drugs Aging 1998; 12:305-334.
- 2 McGuire WP, Rowinsky EK, Rosenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, et al. Taxol: a unique antineoplasic agent with significant activity in advanced ovarian epithelial neoplasms. Ann Intern Med 1989;
- Jamois C. Comets E. Mentré F. Marion S. Farinotti R. Bonhomme-Faivre L. Pharmacokinetics and neutrophil toxicity of paclitaxel orally administered in mice with recombinant interleukin-2. Cancer Chemother Pharmacol 2005; 55:61-71.
- 4 Callies S, De Alwis DP, Harris A, Vasey P, Beijnen JH, Schellens JH, et al. A population pharmacokinetic model for paclitaxel in the presence of a novel P-gP modulator, Zosuquidar trihydrochloride (LY335979). Br J Clin Pharmacol 2003; 56:46-56.
- 5 Allen JD, Brinkhuis R F, van Deemter L, Wijnholds J, Schinkel AH. Extensive contribution of the multidrug transporters P-glycoprotein and MDR 1 to basal drug resistance. Cancer Res 2000; 60:5761-5766.
- Parekh H, Wiesen K, Simpkins H. Acquisition of Taxol resistance via P-glycoprotein and non P-glycoprotein mechanisms in human ovarian carcinoma cells. Biochem Pharmacol 1997; 53:461-70.

- Kruijtzer CMF, Schellens JHM, Mezger J, Scheulen ME, Keilholz U, Beijnen JH, et al. Phase II and pharmacologic study of weekly oral paclitaxel plus cyclosporine in patients with advanced non-small-cell lung cancer. J Clin Oncol 2002; 20:4508-4516.
- Kimura Y, Aoki J, Kohno M, Ooka H, Tsuruo T, Nakanishi O. P-glycoprotein inhibition by multidrug resistance-reversing agent MS-209 enhances bioavailability and antitumor efficacy of orally administered paclitaxel. Cancer Chemother Pharmacol 2002; 49:322-328.
- Chiou JK, Liang JA, Hsu WH, Wang JJ, Ho ST, Kao A. Comparing the relationship of Taxol-based chemotherapy response with P-glycoprotein and lung resistance-related protein expression in non-small cell lung cancer. Lung 2003; 181:267-273.
- 10 Stein U, Wather W, Shoemaker RH. Modulation of mdr1 expression by cytokines in human colon carcinoma cells: an approach for reversal of multidrug resistance. Br J Cancer 1996; 74:1384-1391.
- Bonhomme-Faivre L, Pelloquin A, Tardivel S, Urien S, Mathieu MC, Castagne V, et al. Recombinant interleukin-2 treatment decreases P-glycoprotein activity and paclitaxel metabolism in mice. Anticancer drugs 2002; 13:51-57.
- 12 Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 147: 187-376

- 13 Tourani JM. Immunothérapie et immunomodulation. Oncologie 2002; 43:1-7.
- Qin Y, Hokland ME, Bryant JL, Yuquing Z, Nannmark U, Watkins RH, et al. Tumor localization by adoptively transferred, interleukin-2-activated NK cells leads to destruction of well-established lung metastases. Int J Cancer 2003; **105**:512-519.
- 15 Chadi A, Rouchon C, Hosten B, Farinotti R, Bonhomme-Faivre L. Enhanced oral bioavailability of paclitaxel by recombinant interleukin-2 with murine Lewis lung carcinoma. Drug Metab Drug Interact 2004; 20:219-229.
- 16 Orlawski S, An D, Belehradek Jr J, Mir L. Antimetastatic effects of electrochemotherapy and of histoincompatible interleukin-2-secreting cells in the murine Lewis lung tumor. Anticancer Drugs 1998; 9:551-556.
- 17 Rose WC. Taxol-based combination chemotherapy and other in vivo preclinical antitumor studies. J Natl Cancer Inst Monogr 1993; 15:47-53.
- 18 Kitasono M, Sumizawa T, Takebayashi Y, Chen ZS, Furukawa T, Nagayama S, et al. Multidrug resistance and the lung resistance-related protein in human colon carcinoma SW-620 cells. J Natl Cancer Inst 1999; 91:1647-1653.
- Mustafa A, McKallip RJ, Fisher M, Duncan R, Nagarkatti PS, Nagarkatti M. Regulation of interleukin-2-induced vascular leak syndrome by targeting CD44 using hyaluronic acid and anti-CD44 antibodies. J Immunother 2002; **25**:476-488.